SNSB Summer Term 2013 Ergodic Theory and Additive Combinatorics Laurențiu Leuștean

08.05.2013

Seminar 3

(S3.1)

- (i) $(X, 1_X)$ is minimal if and only if |X| = 1.
- (ii) If (X, T) is minimal, then T is surjective.
- (iii) A factor of a minimal TDS is also minimal.
- (iv) If a product TDS is minimal, then so are each of its components.
- (v) If (X_1, T_{X_1}) , (X_2, T_{X_2}) are two minimal subsystems of a TDS (X, T), then either $X_1 \cap X_2 = \emptyset$ or $X_1 = X_2$.
- (vi) A disjoint union of two TDSs is never a minimal TDS.

(S3.2) Let (X,T) be a TDS and assume that X is metrizable. For any $x \in X$, the following are equivalent:

- (i) x is recurrent.
- (ii) $\lim_{k \to \infty} T^{n_k} x = x$ for some sequence (n_k) in \mathbb{Z}_+ .
- (iii) $\lim_{k \to \infty} T^{n_k} x = x$ for some sequence (n_k) in \mathbb{Z}_+ such that $\lim_{k \to \infty} n_k = \infty$.

(S3.3)

- (i) If $\varphi : (X,T) \to (Y,S)$ is a homomorphism of TDSs and $x \in X$ is recurrent (almost periodic) in (X,T), then $\varphi(x)$ is recurrent (almost periodic) in (Y,S).
- (ii) If (A, T_A) is a subsystem of (X, T) and $x \in A$, then x is recurrent (almost periodic) in (X, T) if and only if x is recurrent (almost periodic) in (A, T_A) .

(S3.4) Let (X,T) be a TDS. The following are equivalent:

- (i) (X,T) is minimal.
- (ii) every point of X is forward transitive and almost periodic.
- (iii) there exists a forward transitive point $x_0 \in X$ which is also almost periodic.

(S3.5) Let (X,T) be a TDS and $x \in X$. The following are equivalent:

- (i) x is almost periodic.
- (ii) For any open neighborhood U of x, there exists $N\geq 1$ such that

$$\mathcal{O}_+(x) \subseteq \bigcup_{k=0}^N T^{-k}(U).$$

(iii) $(\overline{\mathcal{O}}_+(x), T_{\overline{\mathcal{O}}_+(x)})$ is a minimal subsystem.