SNSB
Summer Term 2013
Ergodic Theory and Additive
Combinatorics
Laurenţiu Leuştean
08.05.2013

Seminar 3

(S3.1)
(i) $\left(X, 1_{X}\right)$ is minimal if and only if $|X|=1$.
(ii) If (X, T) is minimal, then T is surjective.
(iii) A factor of a minimal TDS is also minimal.
(iv) If a product TDS is minimal, then so are each of its components.
(v) If $\left(X_{1}, T_{X_{1}}\right),\left(X_{2}, T_{X_{2}}\right)$ are two minimal subsystems of a $\operatorname{TDS}(X, T)$, then either $X_{1} \cap X_{2}=\emptyset$ or $X_{1}=X_{2}$.
(vi) A disjoint union of two TDSs is never a minimal TDS.
(S3.2) Let (X, T) be a TDS and assume that X is metrizable. For any $x \in X$, the following are equivalent:
(i) x is recurrent.
(ii) $\lim _{k \rightarrow \infty} T^{n_{k}} x=x$ for some sequence $\left(n_{k}\right)$ in \mathbb{Z}_{+}.
(iii) $\lim _{k \rightarrow \infty} T^{n_{k}} x=x$ for some sequence $\left(n_{k}\right)$ in \mathbb{Z}_{+}such that $\lim _{k \rightarrow \infty} n_{k}=\infty$.
(S3.3)
(i) If $\varphi:(X, T) \rightarrow(Y, S)$ is a homomorphism of TDSs and $x \in X$ is recurrent (almost periodic) in (X, T), then $\varphi(x)$ is recurrent (almost periodic) in (Y, S).
(ii) If $\left(A, T_{A}\right)$ is a subsystem of (X, T) and $x \in A$, then x is recurrent (almost periodic) in (X, T) if and only if x is recurrent (almost periodic) in $\left(A, T_{A}\right)$.
(S3.4) Let (X, T) be a TDS. The following are equivalent:
(i) (X, T) is minimal.
(ii) every point of X is forward transitive and almost periodic.
(iii) there exists a forward transitive point $x_{0} \in X$ which is also almost periodic.
(S3.5) Let (X, T) be a TDS and $x \in X$. The following are equivalent:
(i) x is almost periodic.
(ii) For any open neighborhood U of x, there exists $N \geq 1$ such that

$$
\mathcal{O}_{+}(x) \subseteq \bigcup_{k=0}^{N} T^{-k}(U)
$$

(iii) $\left(\overline{\mathcal{O}}_{+}(x), T_{\overline{\mathcal{O}}_{+}(x)}\right)$ is a minimal subsystem.

